QRS micro-fragmentation as a mortality predictor

Authors

HNATKOVA Katerina ANDRŠOVÁ Irena NOVOTNÝ Tomáš BRITTON Annie SHIPLEY Martin VANDENBERK Bert SPRENKELER David J JUNTTILA Juhani REICHLIN Tobias SCHLOEGL Simon VOS Marc A FRIEDE Tim BAUER Axel HUIKURI Heikki V WILLEMS Rik SCHMIDT Georg FRANZ Michael R STICHERLING Christian ZABEL Markus MALÍK Marek

Year of publication 2022
Type Article in Periodical
Magazine / Source European heart journal
MU Faculty or unit

Faculty of Medicine

Citation
web https://academic.oup.com/eurheartj/article/43/40/4177/6533247
Doi http://dx.doi.org/10.1093/eurheartj/ehac085
Keywords Electrocardiogram; QRS complex; Fragmentation; Mortality prediction
Description Aims Fragmented QRS complex with visible notching on standard 12-lead electrocardiogram (ECG) is understood to represent depolarization abnormalities and to signify risk of cardiac events. Depolarization abnormalities with similar prognostic implications likely exist beyond visual recognition but no technology is presently suitable for quantification of such invisible ECG abnormalities. We present such a technology. Methods and results A signal processing method projects all ECG leads of the QRS complex into optimized three perpendicular dimensions, reconstructs the ECG back from this three-dimensional projection, and quantifies the difference (QRS 'micro'-fragmentation, QRS-mu f) between the original and reconstructed signals. QRS 'micro'-fragmentation was assessed in three different populations: cardiac patients with automatic implantable cardioverter-defibrillators, cardiac patients with severe abnormalities, and general public. The predictive value of QRS-mu f for mortality was investigated both univariably and in multivariable comparisons with other risk factors including visible QRS 'macro'-fragmentation, QRS-Mf. The analysis was made in a total of 7779 subjects of whom 504 have not survived the first 5 years of follow-up. In all three populations, QRS-mu f was strongly predictive of survival (P < 0.001 univariably, and P < 0.001 to P = 0.024 in multivariable regression analyses). A similar strong association with outcome was found when dichotomizing QRS-mu f prospectively at 3.5%. When QRS-mu f was used in multivariable analyses, QRS-Mf and QRS duration lost their predictive value. Conclusion In three populations with different clinical characteristics, QRS-mu f was a powerful mortality risk factor independent of several previously established risk indices. Electrophysiologic abnormalities that contribute to increased QRS-mu f values are likely responsible for the predictive power of visible QRS-Mf. Key question The cardiac risk associated with visually diagnosed QRS fragmentation suggests that important QRS abnormalities might exist below the resolution of visual detection. Nevertheless, at present, little possibility exists to detect 'invisible' abnormalities of myocardial depolarization. Key finding QRS 'micro-fragmentation', QRS- analysis quantifies 'invisible' abnormalities of myocardial depolarization. It was found to independently predict death in three different populations of a total of 7779 subjects of whom 504 have not survived the first 5 years of follow-up. Take-home message QRS-mu f is a strong predictor of worsened survival. It can be assessed in standard short-term 12-lead electrocardiograms.

You are running an old browser version. We recommend updating your browser to its latest version.

More info