Microbiome and Metabolome Profiles Associated With Different Types of Short Bowel Syndrome: Implications for Treatment

Warning

This publication doesn't include Faculty of Medicine. It includes Faculty of Science. Official publication website can be found on muni.cz.
Authors

BUDINSKÁ Eva GOJDA Jan HECZKOVA Marie BRATOVA Miriam DANKOVA Helena WOHL Petr BASTOVA Hana LANSKA Vera KOSTOVCIK Martin DASTYCH Milan SENKYRIK Michal KRIZOVA Jarmila MRAZ Milos HRADECKY Jaromir HAJSLOVA Jana LENICEK Martin PODZIMKOVA Katerina CHALUPSKY Karel SEDLACEK Rastislav CAHOVA Monika

Year of publication 2020
Type Article in Periodical
Magazine / Source Journal of Parenteral and Enteral Nutrition
MU Faculty or unit

Faculty of Science

Citation
Web https://doi.org/10.1002/jpen.1595
Doi http://dx.doi.org/10.1002/jpen.1595
Keywords bile acids; gut microbiota; parenteral nutrition; short bowel syndrome; short-chain fatty acids; volatile organic compounds
Description Background The gut microbiome and metabolome may significantly influence clinical outcomes in patients with short bowel syndrome (SBS). The study aimed to describe specific metagenomic/metabolomics profiles of different SBS types and to identify possible therapeutic targets. Methods Fecal microbiome (FM), volatile organic compounds (VOCs), and bile acid (BA) spectrum were analyzed in parenteral nutrition (PN)-dependent SBS I, SBS II, and PN-independent (non-PN) SBS patients. Results FM in SBS I, SBS II, and non-PN SBS shared characteristic features (depletion of beneficial anaerobes, high abundance of Lactobacilaceae and Enterobacteriaceae). SBS I patients were characterized by the abundance of oxygen-tolerant microrganisms and depletion of strict anaerobes. Non-PN SBS subjects showed markers of partial FM normalization. FM dysbiosis was translated into VOC and BA profiles characteristic for each SBS cohort. A typical signature of all SBS patients comprised high saturated aldehydes and medium-chain fatty acids and reduced short-chain fatty acid (SCFA) content. Particularly, SBS I and II exhibited low protein metabolism intermediate (indole, p-cresol) content despite the hypothetical presence of relevant metabolism pathways. Distinctive non-PN SBS marker was high phenol content. SBS patients' BA fecal spectrum was enriched by chenodeoxycholic and deoxycholic acids and depleted of lithocholic acid. Conclusions Environmental conditions in SBS gut significantly affect FM composition and metabolic activity. The common feature of diverse SBS subjects is the altered VOC/BA profile and the lack of important products of microbial metabolism. Strategies oriented on the microbiome/metabolome reconstitution and targeted delivery of key compounds may represent a promising therapeutic strategy in SBS patients.

You are running an old browser version. We recommend updating your browser to its latest version.

More info