Priestley-Chao Estimator of Conditional Density

Logo poskytovatele

Varování

Publikace nespadá pod Lékařskou fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

KONEČNÁ Kateřina

Rok publikování 2017
Druh Článek ve sborníku
Konference Mathematics, Information Technologies and Applied Sciences 2017, post-conference proceedings of extended versions of selected papers
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www http://mitav.unob.cz/data/MITAV%202017%20Proceedings.pdf
Obor Obecná matematika
Klíčová slova kernel smoothing; conditional density; Priestley-Chao estimator; statistical properties; bandwidth selection; cross-validation method
Popis This contribution is focused on a non-parametric estimation of conditional density. Several types of kernel estimators of conditional density are known, the Nadaraya-Watson and the local linear estimators are the widest used ones. We focus on a new estimator - the Priestley-Chao estimator of conditional density. As conditional density can be regarded as a generalization of regression, the Priestley-Chao estimator, proposed initially for kernel regression, is extended for kernel estimation of conditional density. The conditional characteristics and the statistical properties of the suggested estimator are derived. The estimator depends on the smoothing parameters called bandwidths which influence the final quality of the estimate significantly. The cross-validation method is suggested for their estimation and the expression for the cross-validation function is derived.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info