MASARYK NEUROSCIENCE HUB

Reseach and Educational Neuroscience Platform

 

 

 

About Masaryk Neuroscience Hub

Our Latest Research

Prenatal exposure to alcohol and its impact on reward processing and substance use in adulthood

6 Jun

Prenatal exposure to alcohol and its impact on reward processing and substance use in adulthood

Heavy maternal alcohol drinking during pregnancy has been associated with altered neurodevelopment in the child but the effects of low-dose alcohol drinking are less clear and any potential safe level of alcohol use during pregnancy is not known. We evaluated the effects of prenatal alcohol on reward-related behavior and substance use in young adulthood and the potential sex differences therein. Participants were members of the European Longitudinal Study of Pregnancy and Childhood (ELSPAC) prenatal birth cohort who participated in its neuroimaging follow-up in young adulthood. A total of 191 participants (28-30 years; 51% men) had complete data on prenatal exposure to alcohol, current substance use, and fMRI data from young adulthood. Maternal alcohol drinking was assessed during mid-pregnancy and pre-conception. Brain response to reward anticipation and reward feedback was measured using the Monetary Incentive Delay task and substance use in young adulthood was assessed using a self-report questionnaire. We showed that even a moderate exposure to alcohol in mid-pregnancy but not pre-conception was associated with robust effects on brain response to reward feedback (six frontal, one parietal, one temporal, and one occipital cluster) and with greater cannabis use in both men and women 30 years later. Moreover, mid-pregnancy but not pre-conception exposure to alcohol was associated with greater cannabis use in young adulthood and these effects were independent of maternal education and maternal depression during pregnancy.

Weak coupling of neurons enables very high-frequency and ultra-fast oscillations through the interplay of synchronized phase shifts

17 Apr

Weak coupling of neurons enables very high-frequency and ultra-fast oscillations through the interplay of synchronized phase shifts

Recently, in the past decade, high-frequency oscillations (HFOs), very high-frequency oscillations (VHFOs), and ultra-fast oscillations (UFOs) were reported in epileptic patients with drug-resistant epilepsy. However, to this day, the physiological origin of these events has yet to be understood. Our study establishes a mathematical framework based on bifurcation theory for investigating the occurrence of VHFOs and UFOs in depth EEG signals of patients with focal epilepsy, focusing on the potential role of reduced connection strength between neurons in an epileptic focus. We demonstrate that synchronization of a weakly coupled network can generate very and ultra high-frequency signals detectable by nearby microelectrodes. In particular, we show that a bistability region enables the persistence of phase-shift synchronized clusters of neurons. This phenomenon is observed for different hippocampal neuron models, including Morris-Lecar, Destexhe-Paré, and an interneuron model. The mechanism seems to be robust for small coupling, and it also persists with random noise affecting the external current. Our findings suggest that weakened neuronal connections could contribute to the production of oscillations with frequencies above 1000 Hz, which could advance our understanding of epilepsy pathology and potentially improve treatment strategies. 

Previous 1 2 3 4 5 6 7 41 Next

Find more publications from masaryk neuroscience hub

State-of-the-art core services

Available Core Services

Core services

You are running an old browser version. We recommend updating your browser to its latest version.

More info